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We study phase separation in a binary mixture of two particles, which can react with each other and
form a third compound. We determine the exact phase boundaries for a restricted range of the interac-

tion parameters.
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I. INTRODUCTION

Phase separation in binary mixtures is a phenomenon
that occurs widely in nature, as is seen for example in mi-
croemulsions [1], alcohol water mixtures [2], binary metal
alloys [3], molten salts or ionic salt solutions [4], ad-
sorbed molecules on substrates [5], etc. It has been a sub-
ject of considerable interest, both experimentally and
theoretically [6,7].

It has been known that some of the above systems can
be described well in terms of Ising lattice models [8] with
one order parameter. However, there are also binary sys-
tems that are more complicated. For example, binary al-
loys containing a magnetic component such as the Ni-Al
or the Fe-Al alloys have two order parameters, namely,
the mole fraction of aluminum and the magnetization.
Both these systems are known to have over ten phases
[9]. In general, systems having two or more order param-
eters can be expected to have a richer phase structure,
which arises due to competition between the ordering
mechanisms of the order parameters. In this paper, we
study the equilibrium phases of a complex binary system
that needs to be described in terms of two order parame-
ters. Our model also has a rich variety of phases, and un-
like the previous example, it is possible to obtain some ex-
act results.

The model we study consists of two components 4 and
B, which can react with each other and form a third com-
pound C. These kinds of systems are found to occus, for
example, in various chemical reaction, ionic solutions, su-
perconductors, etc. There have been mean field studies of
such systems by Albeck and Gitterman [11], and studies
on lattice models by Corrales and Wheeler [10]. One of
the models in Ref. [10] is a special case of the class of sys-
tems we study here. Where relevant, our results are in
qualitative agreement with theirs, which will be discussed
in the appropriate contexts.

In our model, we treat the compound C as an indepen-
dent entity, which interacts with other neighboring parti-
cles of type A, B, and C. One may alternatively think of
this model as a binary lattice gas that has additional
effective three- and four-body interactions. This is not
unreasonable, as one does occasionally encounter interac-
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tions that involve more than two particles. For example,
when an ionic molecule is in the presence of a charged
particle it gets polarized, which is a three-body interac-
tion. Taking another example, in an Fe-Al alloy the fer-
romagnetic exchange interaction between two iron parti-
cles is altered by the presence of nearby aluminum parti-
cles, which has been written in terms of effective three-
and four-body interactions in a Monte Carlo study by
Schmid and Binder [12]. However, we can also justify
the inclusion of many-body interactions by the discretiza-
tion approximation to a lattice gas. It is in fact quite
common to study models in which the many-body in-
teractions do not necessarily have a microscopic origin,
but are simply effective parameters, giving rise to the ex-
perimentally observed properties. This approach has
been discussed by Zunger in Ref. [6]. It would thus be
useful to have exact results in models having many-body
interactions.

The paper is organized as follows. In Sec. II we de-
scribe our model and show that in a restricted region of
parameter space, it can be mapped on to two interacting
Ising models. This enables us to obtain exact results in
some special cases, which we describe in Secs. IIT and IV.
In Sec. V, we conclude.

II. MODEL

We consider a lattice model of two kinds of particles,
A (square loops) and B (small squares), which is illustrat-
ed in Fig. 1. Multiple occupancy of 4 and B type parti-
cles is forbidden. It is however possible for a particle B
to be in the same site as a particle, A, representing the
formation of the compound C. That is, the particles 4
and B are assumed to be able to reversibly bind together
according to the equation

A+B=C . (1)

Let —puc be the energy associated with the forward reac-
tion involving the formation of the compound C. The
components 4 and B react with each other with energies
€44> €pp, and € ,5. The compound C is assumed to
behave independently and in our model, one can
equivalently think of the system as having effective
three-body and four-body interactions. Let € 4 and €z,
be the strengths of the two effective three-body interac-
tions, and €cc be the strength of the effective four-body
interaction. The partition function of the system is
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where f=1/T is the inverse temperature; n; and 7; are
indicator variables for the presence of the 4 or B com-
ponents at the site i and can be either 1 or 0. p 4 and up
are the fugacities of the 4 and B particles. The binary
variable y; signals the presence of absence of the com-
pound C at site i and is defined by

Yi=nT;i - 3)

We note that the total interaction between A and C parti-
cles is (e 4o +€,41+€ 45), that between B and C particles
it is (egc+¢€ 45 T €pp), and that between two C particles
itis (eccteyq4tepp +2€ 45).

The Hamiltonian (2) has nonlinear terms up to fourth
order. It is usually hard to study the properties of this
kind of system analytically, but in this model the Hamil-
tonian can be simplified in a restricted region of parame-
ter space by making the following nonlinear transforma-
tion:

g =(n,—1)%. (4)

It is clear that g; is unity if exactly one of the 4 or B
components are present at the site i and zero if they are
both absent or both present. Hence, g; is an indicator of
single occupancy at the site i. The sets of variables {g;}
and {7;}, or {g;} and {n;} are independent, since the
transformation (4) can be inverted:

FIG. 1. A lattice model for an interacting binary reactant
mixture. There are three kinds of particles, namely A4 (square
loops), B (small dark squares), and a third composite particle C,
which is formed when a B and an A particle are at the same
site. Each particle interacts with other neighboring particles
(see text).
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S exp|—B3 [eqan;n; +egpTTiteccy VT E 4807+ 71 )te clnyj+ying)tegelry+y,7; )]

—

n;=(g—; )2:&' —7;+2y,
(5)

or T,':(g,'_ni )2=gi—n,-+2‘y,- .

We can thus eliminate either the n; or the 7; variables
in Eq. (2). Due to the symmetry between the A4 and B
components in the Hamiltonian, we choose to eliminate
the n; variables in the subsequent analysis without loss of
generality. The model then becomes more tractable if we
make the following constraints:

@, (2,)7/1"}’; ]2—3[4(€AA+5AC)+€CC]=O )
ij

G, <E>(gi7’j+7’igj) ] =—PB[2e,44te,4c]=0,
ij

(6)
@, [2 (”'i?’j+1’i7'j) ] =—PB[2(e 45 —€44)F+Epc € 4c]

<1j

:O’

G, [(2>(gi7j+7'igj) ] =—Ble . —€44]=0,
ij

where the @’s denote coefficients. We will assume that

these constraints always hold for the rest of this paper,

implying that

ECC:_ZEAC:—ZEBC:4€AB=4EAA . (7)

While it is true that this is a restriction on the original
model (2), there still exists a rich variety of phases with
the remaining freedom available. Using the constraints
in Eq. (7), the partition function becomes

Z= 73 exp —Bz[EAAgigj+(sBB—€AA)TiTj]

{gi},[ﬂ'} (ij)
—BQ2u 4 +uc)y i
i

TB2 (ka8 (pgtpptuc)n]

(8)

This is the partition function of an interacting lattice gas
of two species, whose Hamiltonian has no terms higher
than of second order.

Let the densities of the components 4, B, and C be
P 4> Pp»>and pc, respectively. They are given by
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FIG. 2. A typical phase diagram for €,,=¢cppz <0 and
2uo+uc=0. There are two first order lines ending at critical
points. Here we have chosen €4,+puc/4=0.5. The phase for
small values of |h| has pc~ 1.
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FIG. 3. Three kinds of phase diagrams for £,,<0 and
2uo+uc7#0. Here we have chosen €,,=¢egp = —4, u,=10, and
three values for puc. () pc=-—1.25 (continuous line); (ii)
pe=—0.427528 (dashed line). The dark circle is a critical
point; (iii) uc=1 (dotted lines, both ending at critical points).
There are similar graphs for 2uy,+pc <0, in which case the
phase in the central region would be D.
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FIG. 4. Schematic plot of the seven possible cases for
€44=¢€pp >0. The dark curve is a critical line, and the seven
light curves represent the possible paths the temperature depen-
dent field H can take, depending on the other parameters. For
h >0, G represents A particles, while for 2 <0, G represents B
particles.
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FIG. 5. A typical phase diagram for pc=—2u 4, €44 <0 and
€gp <E44, at zero temperature. Both the lines correspond to
first order phase transitions. In this figure €,,=—0.1,
epp=—0.2.
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FIG. 6. A typical phase diagram for puc=—2u ,, €44 <0,
and egp > €44 at zero temperature. The two oblique lines corre-
spond to second order phase transitions, while the vertical line
is of first order. Here we have chosen €44,=—0.1, €55 =0.
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FIG. 7. A typical phase diagram for uc=—2u ,, €44>0,
and g5 < €4y, at zero temperature. The two vertical line corre-
spond to second order lines, while the oblique line is of first or-
der. Our choice of parameters in this figure is € 44,=0.1, €35 =0.
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FIG. 8. A typical phase diagram for pc=-—2u,, €,,4>0,
and €pp > €4y, at zero temperature. All the four lines corre-
spond to second order phase transitions. The central parallelo-
gram region can have a coexistence of two phases (see text). In
this figure, €,,=0.1 and g3 =0.2.

o —(m(1—7))——L [3InZ _amz
8 l ' NB | Opy e ’
1 dlnZ oJlnZ
=H{r(l—n))=— | =——— 9)
PpAT NB | dup  duc
o =(n»7'->=L dInZ
C iti NB aIJfC

In the next two sections, we study the two nontrivial
cases £,4,=¢€pp and u-=—2u 4. It is also possible to ob-
tain the phase diagram when €,,=0. However, in the
latter case it is clear from Eq. (7) that all the cubic and

phase diagrams in Figs. 2, 3, and 4. If €, is attractive,
then there are typically two first order transitions at low
temperatures as the relative concentration of the com-
ponents is varied. In some cases, the first order lines end
in critical points (Figs. 2 and 3), while in other cases the
first order lines enclose a third phase rich in C (Fig. 3),
which is reminiscent of the Superconducting Cooper pair
phase in BCS superconductors. If €, is repulsive, there
is a critical boundary enclosing a sublattice phase (Fig. 4).
Depending on the interaction parameters, there are zero,
one, or two second order phase transitions in the system.
Our main results for (o= —2u ,) are summarized in
Figs. 5 to 8. There are sublattice phases when either €4,
or €y is repulsive (Figs. 6 and 7), or both (Fig. 8).

One general observation from all the cases we study is
that sublattice phases are always separated from homo-
geneous phases by second order phase transitions, while
homogeneous phases are separated from other homogene-
ous phases by first order phase transitions. In our model,
sublattice phases can arise when there is a repulsive 4-4
or B-B interaction.

III. PHASE DIAGRAMS FOR ¢,,=¢;

In this case the coefficient of 3 7;7; vanishes. The par-
tition function (8) can be rewritten as

Z=Z,Z,, (10)

where Z, is the partition function of the g particles
along, and Zp is the partition of the 7 particles, given
any particular configuration of the g’s, i.e.,

Z,= - 8+ s (11
quartic nonlinear terms in the original Hamiltonian van- & E’}CXP BEAA%")g’gJ /3,u,1§g,
ish, making the transformation (4) unnecessary. '
Our main results for €,,=¢€gp are summarized by the  and
J
NN N
Zp=3 3 'C ?CLexp[Butuptuc)ly +Bup—p, ]
1,=01,=0
Nl NZ
={1+exp[Blp +uptuc)l} {1+exp[Blug—p )1} * . (12)

Here N, is the maximum possible number of B particles in sites distinct from those occupied by the g variables, and N,
is the maximum number of B particles that occupies the same sites as the g variables, i.e.,

N1=N—zgi ,

N2=Zgi .

Substituting Eqgs. (13) in (12), we find that the partition function is

Z={1+exp[Bp 4 +pg+pc)}¥S exp
{g,']

—Beaq 2 8i8; ]CXP
(ij)

cosh[B(p 4 +pug+pc)/2]
cosh[B(u 4 —ug)/2]

—Buc/2—In

>8; ] - (14)

i
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It is useful to parametrize u 4 and uy as
Ba=HMoth, (15)

mp=Ho—h .

This parametrization expresses the symmetry between
the particles 4 and B as a symmetry between 4 and —h.

We can make the wusual change of variables
g;=(1-+s5;)/2 to obtain the spin variables s; for an Ising
model. Let the corresponding Ising system have an
effective coupling J and an Ising field H:

(16)

1 T cosh(2uy+uc)/2T
H(T,h)=—¢ey——puc——1
(T,h) aa” ghcT cosh(h /T)

We note that the Ising field is temperature dependent. It
is clear that first order transitions are driven by the
change in the sign of H, if J is negative and the tempera-
ture is below the Ising critical temperature 7. Hence
the first order transition boundaries are exact in all di-
mensions.

Using Eqgs. (9) and (14), one finds that the densities of
the three components are given by

p4=4(1+m,)(1+tanhph) ,
pp=1(1+m,)(1—tanhBh) , an
pc=4(1—=m,)[1+tanhB(uy+uc/2)],

where m, is the magnetization of the Ising system. The

ratio of the components 4 and B is always given by
— ,2Bh

pPa/pp=e™".

For the phase structure, there are three cases to be
considered.

Case (i): €4,<0; 2ug+uc=0. In this case, the Ising
model is ferromagnetic, and the Ising field H decreases
monotonically with increasing temperature for |h|#0
and is constant otherwise. The condition for phase tran-
sitions to occur is that

H(oo,O)=——sAA-—i4c~<0. (18)

In the h-T plane there are two first order lines starting
at h ==+2H(0,0) and ending at a critical point, which is
shown in Fig. 2. For small values of |4 |, the low temper-
ature phase is approximately half filled with the C parti-
cles, and for large values of ||, the low temperature
phase consists of free particles. In particular, for 4 large
and positive, the low temperature phase is phase B in ob-
vious notation, and for 4 large and negative, the low tem-
perature phase is phase 4. The extreme limit is when
€44t U /4=0, where both the first order lines collapse at
|h|=0 and end at T with a critical point.

Case (ii): €44<0; 2uy+uc70. This also corresponds
to a ferromagnetic Ising model, but in this case, the Ising
field increases with temperature when |A| < |uy+pc/2|.
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Hence in order for phase transitions to occur in the sys-
tem, we require that

H(OO,O):~8AA_l€TC>O

and

Bc

H(0,0)= =g, — " -;—I,uo—l-,uc/2|<0. (19)

When Eq. (19) is satisfied, the temperature at which the
Ising field vanishes is maximum for A =0. For nonzero
values of 4 the cross-over temperature decreases until, at
the value hy=—2H (0,0), it becomes zero. For |h|>h,
there is no transition. The system has a first order transi-
tion if the Ising field sweeps through zero at any tempera-
ture below the critical temperature T of the Ising sys-
tem. There are thus three possible kinds of phase dia-
grams. If H=0 at a crossover temperature smaller than
Tc, then there is a continuous first order line that
separates the two phases in the A-T plane. If the cross-
over temperature is larger than T, then the system has
two first order lines, each ending at a critical point. If the
crossover takes place exactly at T, then there is one crit-
ical point at the point where the two first order lines
meet. In Fig. 3 we plot the phase diagram of the system
in the A-T plane for these three scenarios. Similar phase
diagrams have been obtained in Ref. [10] at the mean
field level, and also in a special case in three dimensions.

From Eq. (17) it is clear that at low temperatures and
large values of ||, the system has predominantly un-
reacted particles (corresponding to phase 4 or B, depend-
ing on the sign of h). There are two possible low temper-
ature phases, depending on whether 25+ is greater or
less than zero. If 2u,+puc >0, then the low temperature
phase consists predominantly of the C particles (phase C).
On the other hand if 2uy+p e <0, then the low tempera-
ture phase is predominantly empty of all the three types
of particles, which we call the “null phase” and denote by
phase D.

Case (iii): €4,>0. In the cases (i) and (ii) above, we
had ,,<0. We now consider the antiferromagnetic case
with €,,>0, in which we get phases that are driven by
second order phase transitions.

The simplest way to study this situation is to plot the
phase diagram of the Ising antiferromagnet in a magnetic
field. While the problem of an Ising antiferromagnet in
an external magnetic field has not yet been solved exactly,
the qualitative shape of the critical line is known for
several lattice structures [13], and it is known to a high
degree of precision in square lattices [14]. We have plot-
ted it schematically in Fig. 4. The low temperature and
large positive H phase consists predominantly of unreact-
ed particles. We call this the G phase. The phase at low
temperatures and large negative H is phase C, with the
density of C particles being e?*. The phase at low tem-
peratures and small H has a sublattice structure, with
predominantly unreacted particles in one sublattice such
that p , /pp =e*"*, and the other sublattice has a few un-
reacted particles and the density of the compound C is
given by p¢ =¢?Ph, This we denote by the phase GC.
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In this case, H is temperature dependent and varies in
the same way as in cases (i) and (ii), except for a constant
shift. Thus H increases with increasing temperature
when |h| <|po+uc/2| and decreases otherwise. There
are thus totally seven possibilities, which we have illus-
trated in Fig. 4. In two of them, the system undergoes
two second order phase transitions as the temperature is
varied. This kind of behavior has been studied for a simi-
lar model in a decorated lattice [10]. There are of course
the two special cases when the critical points merge, and
this is discussed in some detail by Corrales and Wheeler
[10]. Then there are also the two possibilities in which H
remains in the large positive region or in the large nega-
tive region at all temperatures, in which case there is no
phase transition. Finally if |H (0,4)| lies inside the sub-
lattice section, there is exactly one second order phase
transition in the system.

IV. PHASE DIAGRAMS FOR p¢c=—2u 4

We have so far considered the case when the coefficient
of ¥7;7; in Eq. (8) vanishes. It is also possible to obtain
results when this coefficient is nonzero, provided the
coefficient of 3g;r; vanishes, which happens when
tc=—2u 4. The system then becomes equivalent to two
noninteracting lattice gases and can be transformed on to
two noninteracting Ising models with effective couplings
Jg and J,, and in the presence of magnetic fields H, and
H _, in the usual way. We then have

_ €44
Jg_T Py
J.=zlepp—e€44) (20
Hy=eqqts14,

H,=(epgp—e )t 3(up—p4) .

We note that the Ising fields are not temperature
dependent, which makes the analysis simpler as com-
pared to that in the preceding section. The densities of
the three components are given by

pAz(n,(l*’r,)>=<g,(1—7',)>=%(1+mg)(l—m,.) s
pp={7;(1—n;))=(g;7;) =21 +m)1+m,), 21

pc={m7)={r,(1—g;)) =+1—my)(1+m,),

where m, and m . are the magnetizations of the two Ising
systems. One can verify that Eq. (21) is consistent with
Eq. (17) for e,,=€pp, since in that case
m = —tanhfh =tanhfB(py+puc/2).

There are four cases, depending on whether each of the
Ising models are ferromagnetic or antiferromagnetic.

Case (i): €,4<0, €pp <€,44 In this case both the sys-
tems are ferromagnetic. There are two critical points and
four phases 4, B,C and the null phase D, which exist at
temperatures below the lower of the critical tempera-
tures. Let phase I be the phase that is rich in 4 type
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components. Phase A4 is stable when H, >0, H, <0.
Phase B occurs when H,>0, H .>0. The phase C
occurs when H, <0, H, >0. The null phase (phase D)
has a very low concentration of all the three substances
A, B, and C, and occurs when H, <0, H.<0. The
phase diagram in the plane of u , and up is given in Fig.
5. The four regions are separated by first order phase
boundaries. As the temperature is raised to the critical
temperature of one of the models, the corresponding
phase boundary becomes a critical line and vanishes at
higher temperatures. Hence in this intermediate region
there would be only two phases. At even higher tempera-
tures, both the models become paramagnetic, and the
other boundary line also disappears.

Case (ii): €,4<0, epp >¢€,,. Here the Ising model for
the 7 variables is antiferromagnetic, while the other is fer-
romagnetic. Figure 6 is self-explanatory for this case and
is the phase diagram at 7=0. We note that the oblique
phase boundaries are second order lines, and that there
are totally six possible phases, including the two sublat-
tice phases BD and AC.

Case (iii): €44>0, epp <€ 4 In this case the Ising
model for the g variables is antiferromagnetic, while the
other is ferromagnetic. The phase diagram at zero tem-
perature is given in Fig. 7. In this figure the oblique line
is a first order line, while the two vertical lines are of
second order. The two sublattice phases are BC and AD.

Case (iv): €,,>0, epp >¢€,4 This is the case in which
both the models are antiferromagnetic and has the richest
phase diagram. There are totally ten phases at low tem-
peratures, which are shown in Fig. 8. In addition to the
four phases A4, B, C, and D, there are four sublattice
phases AC, AD, BC, and BD. At the center of the
phase diagram is a coexistence of two more sublattice
phases AB and CD. All the phases are separated by
second order phase transitions. As the temperature is
raised, the central boundary initially increases in size,
then decreases until two of the lines pinch at the critical
temperature of one of the models, leaving three phases in
the intermediate region. At even higher temperatures
there is only one phase.

V. SUMMARY AND DISCUSSION

In summary, we have studied phase separation in an
interacting binary reactant mixture. We have obtained
the phase diagrams in some regions of parameter space
by means of a nonlinear transformation. This enabled the
model that had nontrivial interactions to be mapped on
to coupled Ising models. The rich phase structure was
thus seen to arise out of the various Ising ferromagnetic
and antiferromagnetic phases.

In this paper we have studied equilibrium properties of
the system. Since the transformation (4) can be made in
all dimensions, our results are qualitatively correct in all
dimensions greater than or equal to 2, and the first order
transition boundaries are exact. The next step would be
to study the dynamics of this system. Is it possible to
make an analogous nonlinear transformation as was done
here, which decouples variables for the dynamics also?
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As is well known, one has more flexibility in defining dy-
namics that lead to the same equilibrium Boltzmann dis-
tribution. For example, one or more of the particles
A, B, or C can be kept immobile, while the others
diffuse. The immobile practices can then be considered
to be like “traps”. Such dynamics in this model may
shed some light on, for example, chemical reactions in a
background of quenched random disorder. Another in-
teresting possibility is the existence of glassy behavior in

the system, perhaps in nonbipartite lattices. These are is-
sues that we hope to address soon.
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